
Deep learning enables the identification and isolation of single cells of interest using 
high resolution images of non-labeled cells in flow
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CONCLUSIONS & FUTURE DIRECTIONS
o Multiple cancer cell lines and fetal nucleated red blood cells are shown to be

discriminable against PBMC at near perfect accuracy based on morphology alone.
o Separability of various cell types, subtypes (e.g., Monocyte, NK, B, T) of immune cells,

and states (CD4 T naïve vs activated) is demonstrated via clustering of values derived
from a late layer of the convolutional neural network.

o Samples with extreme spike-in ratios simulating rare cell applications are sorted and
enriched up to five orders of magnitude resulting in limit of detection of up to 1:100,000

o Characterizing cell types and cell states using morphology-based deep classification holds
promise for the development of a universal and standardized lexicon to understand and
interpret morphology and for its integration with other ‘omic’ analyses.

o Cell morphology at this resolution and distinction could serve as a powerful phenotypical
compliment to single cell multi-omic data.

o Further studies are needed to demonstrate the feasibility of transcriptomic analysis
following the isolation and culturing of rare cells of interest from a diverse background.

FIGURE 1. Continuous labeling, training, and sorting pipelines  (A) 
High resolution images of single cells in flow are stored. Deepcell AIAIA (AI Assisted Image 
Annotation) is used to cluster each individual cell into a morphologically similar group of 
cells. Cell clusters are reviewed manually and batch-labeled by an expert. Errors are 
corrected by the “Expert clean-up” step. The annotated cells are then integrated into 
Deepcell Cell Morphology Atlas (CMA). (B) The CMA is used to generate both training and 
validation sets for the next generation of the neural network models. The last two layers of 
an Inception-based network are used to create a UMAP depiction of cell clusters and 
prediction probabilities (C) During a sorting experiment, the pre-trained model shown in (b) 
is used to infer the cell type (class) for every single cell in real-time. The model prediction is 
used in real-time to enrich a target cell of interest. The enriched cells are retrieved from the 
Deepcell sorter and molecularly analyzed after cell lysis, amplification and library 
preparation.

FIGURE 3. Heatmap and UMAP depiction of cells represented by 64-
node fully connected layer of the convolutional neural net (A) Heatmap 
depicting data from the fully-connected layer trained on cells of 18 classes in validation. 
H522, H23 and A549 are lung cancer cell lines; HEPG2, SNU182 and HEP3B2 are liver 
cancer cell lines. Also depicted are labeled fetal nucleated RBCs (fNRBC) from three sample 
not used in training, and WBCs from another three adult subjects not used in training. Each 
row represents a single cell and each column represents one of the 64 dimensions of the 
embedding feature vector. (B) UMAP depiction of the same validation data cell classes. Each 
point represents a single cell. (C) UMAP depiction of subtypes of immune cells combined 
with a set of activated CD4-T cells. 

Cell source Cell type Spike-in ratio # cells 
processed

Sorted cell 
purity

Fold 
enrichment

Fet1 fNRBC 1:1,300 999,978 74% 965

A549 NSCLC 1:1,000 101,180 67% 380

A549 NSCLC 1:10,000 1,107,669 31% 2,305

A549 NSCLC 1:100,000 1,342,632 20% 13,904

H522 NSCLC 1:10,000 1,050,036 26% 2,550

H522 NSCLC 1:100,000 1,561,847 33% 32,500

A. Spiked into PBMC

TABLE 1. Enrichment of cells at known ratio via Deepcell sorter based 
on the label-free morphological classifier Fet1 is a fetal blood sample spiked 
into cells from the corresponding maternal sample. Cells from A549 and H522 cell lines were 
spiked into (A) PBMC or (B) whole blood from an unrelated individual. An additional CD45 
depletion step was used to partly enrich cells spiked into whole blood. Purity of enriched 
cells was estimated by comparing allele fractions for a SNP panel to the known genotypes of 
both the cell lines (or the fetal sample) and the samples that they were spiked into.

o Cell morphology has long been considered a powerful phenotype to identify cell type 
and state in various clinical applications.

o The qualitative, laborious and complex nature of pathology makes it subjective, non-
scalable, and therefore challenging to integrate into the emerging single cell assays and 
technologies.

o Applying machine learning techniques to microscopic tissue images has become a 
prolific area of research in digital pathology1,2

o Current cell sorting approaches have exploited either rudimentary physical characteristics 
or specific cell surface protein expression as a basis for sorting and isolation of 
cells.5 These approaches can introduce biases that can significantly limit the ability to 
discover new molecular dimensions of the cell.

o Several research groups have recently presented cell sorting technologies that use a 
machine learning processor to make sorting decisions3,4. 

o These recent achievements invite the following question: is it possible to truly achieve a 
cyto-pathologist’s level of accuracy, or beyond, to analyze and purify cellular samples at 
scale?

o To this end, we here introduce an AI-powered cell analysis & sorting platform based on 
high-resolution imaging of cells in flow. By developing a continuous labeling, training, 
and sorting pipeline, we show that we obtain near-perfect classification of various cell 
types (and cell states). We also demonstrate the power of morphology for clustering of 
various cell types. Finally, we show enrichment of cell types of interest against PBMC 
inspired by clinically actionable ratios in applications such as circulating tumor cell 
isolations and prenatal Dx.
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3 Intelligent Image-Activated Cell Sorting Nitta N, Sugimura T, Isozaki A, Mikami H, Hiraki K, Sakuma S, Iino T et al. Cell, 2018
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o Platform Development: We developed a novel platform for real time high-res brightfield 
imaging, cell tracking, analysis and sorting of cells in flow (Description outside the scope 
of this presentation)

o Data Collection: high-resolution images from roughly 54 million cells, including cells from 
normal adult blood, fetal blood, trophoblast cell lines, and multiple cell lines derived 
from non-small-cell lung adenocarcinoma (NSCLC), hepatocellular carcinoma (HCC), and 
other types of solid and liquid tumors were collected across 4 replicas of the platform to 
account for environmental variations.

o AI Assisted Image Annotation (AIAIA): We deployed a combination of techniques in self-
supervised, unsupervised, and semi-supervised learning to facilitate cell annotation at 
scale. 

o Model training and validation: We trained an inception-based convolutional neural 
network. We implemented several augmentation methods to generate altered replicas of 
the cell images used to train our classifier. In addition to standard augmentation 
techniques, we studied systematic variation in our image characteristics to develop 
custom augmentation algorithms that simulate environmental variabilities and sample-
correlated imaging artifacts in our system. All validation experiments are carried out on 
samples that were not included in training. 

o Blood processing: All blood samples were collected at external sites according to 
individual institutional review board (IRB) approved protocols and informed consent was 
obtained for each case. For adult control and maternal blood samples, white blood cells 
(WBCs) were isolated from whole blood by first centrifugation then the buffy coat was 
lysed. Fetal cells were isolated from fetal blood by directly lysing with the RBC lysis buffer 
then washed with PBS. Cells were then fixed in 4% paraformaldehyde (Electron 
Microscopy Sciences) and stored in PBS at 4oC for longer term usage. Cell lines were 
purchased from ATCC and cultured in a humidity and CO2-controlled 37oC cell culture 
incubator according to ATCC recommended protocols.

Cell source Cell type Spike-in cell 
concentration

# cells 
processed

Sorted cell 
purity

Fold 
enrichment by 
CD45 depletion

Total fold 
enrichment 
after Deepcell sort

A549 NSCLC 400/ml 1,029,175 55% 13 10,900

A549 NSCLC 400/ml 932,665 80% 16.2 29,000

A549 NSCLC 40/ml 949,836 43% 11 33,500

A549 NSCLC 40/ml 1,012,315 35% 6.7 27,800

B. Spiked into whole blood
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FIGURE 2. Model performance in classification of NSCLC, Liver 
Carcinoma and fNRBC cells against PBMC (A-C) ROC curves and estimated 
Precision Recall curves curves for the classification of three cell categories - NSCLC, HCC, 
and fNRBC. For each cancer cell lines, two ROC curves are shown: one for the positive 
selection of each category, and one for negative selection, specifically for the selection of 
non-blood cells. Insets zoom into the upper left portions of the ROC curves where false 
positive rates are very low to highlight the differences between modes of classification. (D-F) 
Estimated precision-recall curves at different proportions for each cell category.
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o Area under the curve (AUC) of the Receiver Operating Characteristic (ROC) curves 
achieved for NSCLC are 0.9842 (positive selection) and 0.9996 (negative selection); (b) 
AUCs for HCC are 0.9986 (positive selection) and 0.9999 (negative selection); (c) the AUC 
for fNRBC is 0.97 (positive selection). (Figure 2 A-C)

o Precision-Recall plots show expected accuracies in identifying target cells at 3 
hypothetical mixture ratios of 1:1000, 1:10,000 and 1:100,000. Precision corresponds to 
the estimated purity and recall to the yield of the target cells. (Figure 2 D-F)

o The heatmap depiction of an 18-class classifier’s fully-connected layer shows clustering of 
the 64 dimensions. This shows strongly correlated features that discriminate among 
different conditions (malignant vs not), the major classes (NSCLC vs HCC), and also
features that distinguish among individual cell lines (A549 vs H522). (Figure 3A)

o UMAP depiction of corresponding heatmap show another view of how the model 
discriminates various cell types. (Figure 2B)

o UMAP depiction of subtypes of immune cells shows separation between Monocytes, NK 
cells, B cells and CD4 T cells. UMAP depiction shows well separation between CD4 T 
Naïve and CD4 Activated T cells, demonstrating significant morphological changes 
associated with T cell activation. (Figure 2C)

o Purifying target cells in a variety of spike-in experiments shows enrichment up to 32,000 
fold using morphology alone. (Table 1)
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o Molecular analysis: Cell lines and WBCs of individual blood donors were genotyped with 
Next Generation Sequencing using a targeted SampleID panel (Swift Biosciences) that 
includes 95 assays for exonic single nucleotide polymorphisms (SNPs) and 9 assays for 
gender ID.


